自然界中存在一种天然硅铝酸盐,它们具有筛分分子、吸附、离子交换和催化作用。这种天然物质称为沸石,人工合成的沸石也称为分子筛。
按催化性质,分子筛催化剂可以分为以下几点:
1、酸催化剂,利用分子筛的表面酸性进行催化反应;
2、双功能催化剂,分子筛可以负载铂、钯类的金属,得到兼有金属催化功能和酸催化功能的双功能分子筛催化剂;
3、择形催化剂,由于分子筛的催化作用一般发生在晶体内空间,分子筛的孔径大小和孔道结构对催化活性和选择性有很大的影响。分子筛具有规整而均匀的晶内孔道,而且孔径大小接近于分子尺寸,使分子筛的催化性能随反应物分子、产物分子或反应中间物的几何尺寸的变化而显著变化。
分子筛在吸附分离领域的应用:
1、混合二的分离。混合二一般用作溶剂和汽油掺合剂廉价出售,资源浪费十分严重。但混合二的四个异构体:乙苯、对二、间二和邻二都是重要的化工原料,因此有必要将其逐一分离;
混合二的分离方法很多,如精馏法、精密精馏法、加压结晶法、深冷结晶法等是传统的分离方法,但它们的共同缺点是能耗大、设备庞大、操作要求高;
吸附分离法是一种的分离方法,其关键是吸附剂的制备。由于沸石分子筛其结构的特殊性及种类的多样化,以沸石分子筛为吸附剂来分离混合二具有很好的应用前景;
2、N2/ O2的分离。在变压吸附(PSA)法中,沸石分子筛是利用N2/O2两气体在其表面平衡吸附的差异,选择性地吸附 N2。因为 N2的极化率较大,从而 N2与沸石分子筛中的阳离子及其极性表面作用强于 O2。LiA 型沸石分子筛具有更高的 N2/O2选择比及 N2吸附容量,但热稳定性较差。于是,Li+、碱土金属混合阳离子交换后的 A型沸石分子筛具有较高的 N2/O2选择分离系数、N2吸附容量和较高的热稳定性。另外低硅铝比的 X型沸石分子筛引起了人们的关注。人们对其进行了各种离子交换,其 N2/O2分离选择性较高且热稳定性较好;
3、提高汽油辛烷值。由于异构烷烃的辛烷值大大正构烷烃,因此利用吸附分离法可以脱除正构烷烃。实际应用中一般将吸附分离与 C5/C6烷烃异构化相配合,将通过吸附分离出来的正构烷烃进行异构化,从而更大程度的提高汽油的辛烷值。A 型沸石分子筛中的钠离子被钙离子交换达 40%以上时,它的有效孔径可增大至 0.5nm,能满足此分离的要求,分离中烃类混合物通过吸附床层,正构烷烃由于分子外形尺寸小于沸石分子筛孔径尺寸可以自由进入其孔道中被吸附,异构烷烃的分子尺寸较大不能进入,则流出吸附床层为富含异构烷烃高辛烷值的物料。吸附床层吸附饱和后,用脱附剂将正构烷烃脱附送去异构化反应。 [4]
分子筛的催化性能:
分子筛晶体具有均匀的孔结构,孔径的大小与通常分子相当;它们具有很大的表面积。而且表面极性很高;平衡骨架负电荷的阳离子,可进行离子交换;一些具有催化活性的金属也可以交换导入晶体,然后以的分散度还原为元素状态;同时分子筛骨架结构的稳定性很高。这些结构性质,使分子筛不仅成为优良的吸附剂,而且成为有效的催化剂和催化剂载体。
分子筛基本特性:
分子筛对水或各种气,液态化合物可逆吸附及脱附;
金属阳离子易被交换;
分子筛内部空腔和通道形成非常高的内表面积。
1、根据分子大小和形状的不同选择吸附——分子筛效应:分子筛晶体具有蜂窝状的结构,晶体内的晶穴和孔道相互沟通,并且孔径大小均匀,固定(分子筛空腔直径一般在3—15埃之间),与通常分子的大小相当,只有那些直径比较小的分子才能通过沸石孔道被分子筛吸附,而构型庞大的分子由于不能进入沸石孔道,则不被分子筛吸附。而硅胶,活性氧化铝和活性碳没有均匀的孔径,孔径分布范围十分宽广,所以没有筛分性能。
2、根据分子极性,不饱和度和极化率的选择吸附:分子筛对于极性分子和不饱和分子有很高的亲和力;在非极性分子中,对于极化率在的分子有较高的选择吸附优势。此外,沸点越低的分子,越不易被分子筛所吸附。
4A分子筛化学式:Na2O·Al2O3·2SiO2·9/2H2O
硅铝比:SiO2/Al2O3≈2
有效孔径:约4